

Dilute Source CO₂ Capture: Management of Atmospheric Coal-Produced Legacy Emissions FE0026861

Carbon Engineering

Management Team

Adrian Corless CEO

Susan Koch

CFO

David St. Angelo CTO

Jean-François Béland **VP** Corporate Strategy

David Keith

Exec Chair / Founder

Investors / Partners

- Bill Gates
- Murray Edwards

SPX. Roval HaskoningDHV STTU

Technip

Team

- 26 employees
- Target ~30 by end-2017

Intellectual Property

- 8 patent families:
- P-Ca process
- Air Contactor
- Low-CI fuel manufacture

Headquarters

Recognition

\$25 M Virgin Earth Challenge Finalist

Project Overview

Overall Project Objectives

Cultivate a dilute source CO₂ DAC technology that can be applied to re-capture legacy coal-based emissions directly from the atmosphere

Develop a better understanding of DAC performance through lab and pilot study, and codifying these results in TEA format **Project Overview**

Funding, Participants and Performance Dates

Total Project Budget: \$1.875 M USD Federal Cost Share: 80% (\$1.5 M USD) Non-Federal Cost Share: 20% (\$375 k USD)

Project Participants: Carbon Engineering Project Performance Periods:

BP1: 2016-09-19 – 2017-09-18 BP2: 2017-09-19 – 2018-09-18

DAC: Direct Air Capture of CO₂

Inputs: Air, water, energy.

production

Strategic and Transformative Technology:

- Negative Emission Technology
- Can locate anywhere
- Manages emissions from any source
- Highly scale-able

Compared to CCS:

- Higher thermodynamic barrier
- Larger air volume to be processed

CE's DAC Technology

CE's DAC Technology - Partnerships

Leading global cooling tower supplier.

Key technical similarities with CE air contactor.

Supplying CE air contactor. Joint engineering and development. Pelletization technology holders for wastewater.

3 years collaboration on CE's pellet reactor unit.

Supplying CE pellet reactor. Continued joint development. Global EPC, plus ore roasters and kilns.

Joint development of CE's CFB kiln.

Technical oversight for CE pilot calciner.

Calciner technology provider.

Hardware Development History

2005: Spray Tower

2008: Packed Tower

2010: Lab air contactor 2013: Pellet Reactor Tests

2011-2012: Air Contactor Prototype

2013: Calciner Tests

2014-2015: Full end-to-end pilot plant

Project Structure

Project Objectives – Tasks 2 & 3

Overall Operation and Lab Objectives

Cultivate a dilute source CO_2 DAC technology that can be applied to re-capture legacy coal-based emissions directly from the atmosphere

Develop a better understanding of DAC performance

Capitalize on CE's DAC Pilot Research Platform, research program and technical expertise to achieve the above objectives – DOE Project Tasks 2 & 3

Carbon Engineering

2: DAC Applied Research and Development

Pilot Operations:

- 2.1: Sensitivity Analysis and Testing
- 2.3: System and Component Stress Testing

DAC Development and Enhancement:

- 2.2: Technology Research and Development
- 2.4: Sub-system Optimization

What programs leveraging CE's DAC Pilot Research Platform are available to deliver the above learnings?

Carbon Engineering

Air Contactor Performance Testing

Achieve low solvent loss, high mass transfer and increase energy efficiencies

Fan, liquid pumping power tests Solvent loss measurement at different conditions Water use monitoring Packing design (R&D) Nozzle and Basin Design (R&D)

Carbon Engineering

Pellet Reactor Performance Testing

Achieve high retention, and loading rates with low pumping and capital requirements

Fluid velocity testing Lime injection optimization Pellet composition/purity analyses Process solution condition testing

Slaker Performance Testing

Achieve highly reactive, slaked lime slurry from calcined CaO

Grit, impurity content Temperature Particle size Slurry pumpability

Carbon Engineering

Calciner Performance Testing

Achieve calcination of feedstock pellets over extended run times long enough to collect data and prove system operability

Temperature envelope Alkali and impurity solids content over time Lime mud toleration Alternative fuels

Overall System Testing

Achieve high operating hours, collect operations and maintenance data

Long term data logging – operations and maintenance Stress Testing NPE and misplaced PE buildup monitoring Solution/process conditions

Carbon Engineering

3: DAC Applied Research and Development

Pilot Operations and Testing:*3.2: Long term effects*

DAC Development and Enhancement:

- 3.1: Application and Implications
- 3.3: Alternative Technologies Investigation

Technology Optimization:

3.4: Data Analysis and Ongoing Development

3.5: Synthesis of Results and Recommendations

Project Objectives – Tasks 4 & 5

Overall Engineering and Costing Objectives

Advance technological readiness of direct air capture system by developing better understanding of system costs through TEA

Develop commercial-scale specifications for major equipment through engagement with vendors

Leverage results from CE's DAC research platform pilot in Tasks 2 & 3 to deepen understanding of costs at commercial scales

4: Engineering Input for Scale-up and Cost Projections

Engineering Inputs to Scale:

4.1: Define performance characteristics for commercial scale up activities

Technology Analysis Plan:

4.2: TAP based on existing engineering and data

Commercial Readiness of DAC:

4.3: Major Equipment Specification and Vendor Engagement

5: Engineering Input for Scale-up and Cost Projections

Engineering Inputs to Scale: 5.2: Design Basis for Commercial Scale-up

Techno-Economic Assessment:

5.3: DAC Applicability to Coal – Technology Assessment

Commercial Readiness of DAC: 5.1: Core engineering: 1st order commercial plant design 5.4: Gap and Deficiency Identification, Path Forward **Technical Activities**

Project Risks and Mitigation

Technical Risks

System Component Underperformance

Project Execution Risks

Research Pilot is damaged or land becomes unavailable

Resource Risks

Failure to acquire sufficient resources for the project

Mitigation

On-going relationships with industrial equipment vendors

Mitigation

Detailed SOP and HSE Policy Good relationship with lessor

Mitigation

CE well funded and staffed Will hire as necessary

Project Schedule: BP1 (2016 Sep 19 – 2017 Sep 18)

Project Schedule	Q1	Q2	Q3	Q4
Task 1.0 - Project Management				
1.1 - Management				
1.2 - Reports				
1a - Annual Report				
Task 2.0 - DAC R&D, Ops, Testing, Optimization				
2.1 - Sensitivity Analysis & Testing				
2.2 - DAC Technology R&D				
2.3 - Stress Testing				
2.4 - Sub-System Optimization				
2a - Synthesis Data Log Complete				
2b - R&D Results ready for Pilot Plant Input			◊	
Task 4.0 - Engineering for Scale-Up				
4.1 - Key Engineering Inputs				
4.2 - Preliminary TAP				
4.3 - Vendor Engagement				
4a - Updated PFDs and Vendor RFQs				

Project Schedule: BP2 (2017 Sep 19 – 2018 Sep 18)

		Budget Period 2			
		2017/10/07 - 2018/09/18			
Project Schedule	Q1	Q2	Q3	Q4	
Task 1.0 - Project Management					
1.1 - Management					
1.2 - Reports					
1b - Final Report					
Task 3.0 - Applied R&D, Testing, Analysis, Optimization					
3.1 - Enhancement Applications and Implications					
3.2 - Long Term Effects					
3.3 - Solids Research					
3.4 - Data Analysis and Ongoing Development					
3.5 - Data Preparation for Final Report					
3a - Identify Feasible Alternatives Path Forward	٥				
3b - Complete Long Term Effects Research					
Task 5.0 - Cost Projections and Applicability to Coal Stream					
5.1 - Technology Cost Projections					
5.2 - Commercial Scale-Up Design Basis					
5.3 - DAC Applicability to Coal - Technology Assessment					
5.4 - Gap and Deficiency Identification					
5a - Major Equipment Specs and Cost Model					
5b - Engineering Assessment, Full Plant Cost Model					

BP1 Milestones

Budget Period	ID	Task Number	Description	Planned Completion Date	Verification Method
1	1a	1.0	DMP Completed	2016/12/19	DMP Submitted to DOE
1	1b	1.0	Year 1 Annual Report and Updated Project Management Plan	2017/09/30	Project Management Plan File and Report
1	2a	2.0	Synthesis Data Showing >3000 hours Pilot Operation	2017/07/01	Synthesis Data Log
1	2b	2.0	Research results from lab and technology integration ready for input to prototype development	2017/07/01	Research Summary Files
1	4a	4.0	Updated Process Flow Diagram and Vendor Request for Quote	2017/09/30	Process Flow Diagram

BP2 Milestones

Budget Period	ID	Task Number	Description	Planned Completion Date	Verification Method
2	1c	1.0	Project Final Report	2018/09/18	Final Report
2	За	3.0	Identification of Feasible Alternative Technologies and Path Forward	2017/12/31	Path Forward File
2	3b	3.0	Pilot Operations - Completion of Long-term Effects Research	2018/06/30	Long-term Effects Research File
2	5b	5.0	Engineering Assessment, Full Plant Cost Model	2018/09/18	Cost Model File

Progress and Current Status – Tasks 2, 4

Materially advance state of the art of dilute source CO₂ capture Task 2

Task Objectives

- Cultivate a dilute source CO₂ DAC technology that can be applied to recapture legacy coal-based emissions directly from the atmosphere
- Develop a better understanding of DAC performance

Current Status

- > 3000 hours DAC pilot operations during project reporting period (>7500 hours total)
- Baseline testing completed
- Achieved Air Contactor Mass Transfer success criteria
- Achieved calciner success criteria
- Achieved various PR success criteria

Move Technology Towards Commercialization

Task 4

Task Objectives

- Advance technological readiness of direct air capture system by developing better understanding of system costs through TEA
- Develop commercial-scale specifications for major equipment through engagement with vendors

Current Status

- Completed initial review of Technology Analysis Plan (TAP) document with DOE
- Developing detailed PFD for Technoeconomic analysis

Future Work, Commercialization

Complete Award Objectives

Further understanding of CO₂ Utilization and Market Opportunities

Current Budget Period

- Complete Tasks 2, 4, Milestones and Success Criteria
- Compile findings in final report

Upcoming Budget Period

- Execute Tasks 3, 5
- Long term testing and implementation of BP1 lab findings
- Complete TEA and costing study

Near Term Planned Studies

• Pilot downstream technology for CO2 utilization

Long Term

- Commercial validation of DAC and Fuel Synthesis processes
- Commercial deployment

"Air to Fuels" Technology

Enables progressive de-carbonization of transport by gradual fuel switching.

First Commercial A2F Plant

Acknowledgements

Acknowledgment: This material is based upon work supported by the Department of Energy under Award Number DE-FE0026861.

Thanks: Bruce Lani, Chuck Tomasiak

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Dan Kahn, PEng

Business Engineer

dkahn@carbonengineering.com